Testing for Lead Poisoning Are we testing the right kids? City of Atlanta 2005

September 25, 2006

Ambarish Vaidyanathan, MSEnvE Forrest Staley, MUP, MPHc

Objective

To assess lead testing of children at high risk for lead poisoning in the city of Atlanta

Rationale

Childhood Lead Poisoning

- Adverse health effects: cognitive impairment, behavior disorders, seizures and death, etc
- Risk factor also well known: old housing, poverty, etc
- Children with blood lead levels (BLLs) \geq 10 μ g/dL may have no symptoms
- A blood lead test is the only way to know that a child has been exposed
- Challenge is knowing which children are at risk and should be tested

Georgia Lead Testing Guidelines

- Risk should be verbally assessed for all children at 12 and 24 months of age
- Georgia children who should be tested:
 - their verbal assessment indicates risk
 - Medicaid/PeachCare for Kids/WIC eligible
 - reside in homes built before 1978
 - adopted from outside the United States
 - parents may be exposed to lead at work

Neighborhood Risk

- Risk for lead poisoning varies geographically
- Smaller geographic unit more accurate to assess risk
- Neighborhoods seem an ideal geographic resolution for assessing testing
 - Residents/physicians can easily identify their location by neighborhoods

Metro Atlanta Area Overview COBB **GWINNETT** 1-285 City Atlanta I-20 DEKALB **FULTON** CLAYTON ■ Miles 12 18 24

Methods: Datasets

- Childhood blood lead, 2005
 - Aggregated, de-identified information by neighborhoods
 - number of children tested for lead
 - number of children with elevated BLLs for children \leq 3 years of age
- WIC, 2005
 - WIC data used as proxy for poverty
 - Aggregated, de-identified information by neighborhoods
 - number of children \leq 3 years of age enrolled in WIC
- Population, 2000
 - Number of children ≤ 3 years of age from US Census

Methods: Datasets (continued)

- Residential land parcel data
 - Can have one or more housing units depending on type of property
 - Provided by Center for GIS, Georgia Tech.
 - Includes structure construction date,
 appraised value, land use information etc.

Methods

Lead testing & WIC data

- De-duplication of addresses
- 2. Geocoding

Residential land tax parcel data

- 1. Selecting parcels with year structure built
- Single and multifamily residential parcels
- Area-weighted analysis by block groups

Population data from census

2. Children ≤ 3 years

Aggregation

Neighborhood level dataset for analysis

Methods: Neighborhood Risk

- Created priority testing indices
 - To characterize risk by neighborhoods
 - Based on risk factors:
 - % of Pre-1978 housing
 - % of Pre-1950 housing
 - % of WIC children
 - Divided risk factors into percentile groups
 - Developed a scoring scheme to assign value to different percentile ranges of the risk factors

Scoring Scheme for Priority Testing Index

Percent of Neighborhoods with Risk Factors			Percentile Groups	Risk Score
Pre-1978 housing	Pre-1950 housing	Children in WIC		
0-50 %	0 %	0 %	0-10 th	1
51-90 %	1-30 %	1-35 %	11 th -50 th	2
91-99 %	31-83 %	36-100 %	51 th -90 th	3
100 %	84-100 %	100 % +*	91 th -100 th	4

Priority Testing Index

Priority Testing Index

Priority testing indices categorized further

Priority Testing Index (Housing + WIC scores)	Risk Rating
2	Low
3 or 4	Low Medium
5 or 6	High Medium
7 or 8	High

- Calculated two priority testing indices
 - **Pre 1978 and WIC**
 - **Pre 1950 and WIC**

Methods

Demographics

- 236 neighborhoods in the city of Atlanta
- 18,627 children aged (0-3) years

- Testing and WIC
 - 2,231 children tested for lead
 - 23 children had BLL > 10 μg/dL
 - 8,229 children aged (0-3) enrolled in WIC
- Housing
 - 84,055 residential parcels with year housing built
 - Of these 75,286 (89.6%) parcels were built before 1978
 - 47,142 (53.5%) residential parcels built before 1950

Percent of Children Tested by Neighborhood

9% - 17%

18% - 34%

35% - 100+%

1% - 2%

3% - 8%

- An estimated 39 children live in each neighborhood
- Of the 18,627 children in the City of Atlanta, 2,231 (11.9%) were tested for lead
- Of children tested, 23
 (1%) had elevated
 BLLs
- Overall low testing

- Pre 1950 housing concentrated in central Atlanta
- Testing does not match housing risk

Percent of Children on WIC by Neighborhood

9% - 17%

18% - 34%

35% - 100+%

1% - 2%

3% - 8%

- Percentage of children in WIC increases from North to South
- Neighborhoods with high percentage of WIC children have higher testing

- Testing increases as percent of WIC children increases
- Housing risk and testing do not follow clear trend

Priority Testing Index (Housing +	Category Rating	Neighborhoods		
WIC scores)		Pre-1978 and WIC N (% of total)	Pre-1950 and WIC N (% of total)	
2	Low	6 (2.5%)	6 (2.5 %)	
3	Low	22 (9.0%)	18 (7.6%)	
4	Medium	62 (26,3%)	57 (24.2%)	
5	High	71 (30.1%)	82 (34.7%)	
6	Medium	50 (21.2%)	54 (22.9 <mark>%)</mark>	
7	High	17 (7.2%)	15 (6.4%)	
8		8 (3.4%)	4 (1.7%)	
		Total: 236 (100.0%)	Total: 236 (100.0%)	

More than 120 neighborhoods fall under high medium category

- Low category virtually non-existent
- High priority neighborhoods located in center of the city

Discussion

- In general, testing reflects the numbers of WIC children and not housing risk
- Creating priority testing indices was an approach to characterize neighborhood risk
- Combining risk factors can improve risk assessment and ultimately testing

Discussion

- Dissemination of information about high risk neighborhoods can be accomplished by communitybased organization
- Maps can help communities and providers identify children living in high risk neighborhoods
- Primary prevention strategies are key for achieving the 2010 goal of eliminating childhood lead poisoning

Discussion
Fact Sheet: Bedford Pine Neighborhood

Lead screening

Number of screens in 2005: 73 Cases with elevated Blood lead level $(BLL >= 10 \, \text{ug/dL}):1$ Blood lead screening rate: 30.41%

Demographic and Housing Information # of children aged (0-3) years:172 # of children enrolled in Women Infant and Children (WIC):133 Size of neighborhood: 0.4 sq.mile Total # of residential parcels:187 # of Pre 1978 residential parcels:133

Community information

Organizations:

- 1. Atlanta Downtown Neighborhood Assoc.
- 2. Central Atlanta Neighbors
- # of Pediatricians:2
- # of Family Practioners:1

Strengths and Limitations

Strengths

- Use of tax parcel data enables accurate assessment of housing risk
- Smaller geographic units recognized by residents, such as neighborhoods, are better suited for outreach

Limitations

 datasets used in our analyses used data covering different times

Next Steps

- Assess testing among children enrolled in Medicaid
- Reducing error in area-weighted analysis by using advanced GIS techniques.
- Translate methods of this study into a statewide effort

Conclusion

There is a need to increase testing of children living in old housing and in poor families.

Acknowledgements

- Judy Qualters, PhD
- Pam Meyer, PhD
- Mary Jean Brown, ScD, RN
- Jeffrey Shire, MS
- Muthukumar Subrahmanyam, PhD
- Chinaro Kennedy, DrPh

Thank you!!

dvq3@cdc.gov

flstaley@dhr.state.ga.us

